Zetech University Library - Online Catalog

Mobile: +254-705278678

Whatsapp: +254-706622557

Feedback/Complaints/Suggestions

library@zetech.ac.ke

Amazon cover image
Image from Amazon.com
Image from Google Jackets
Image from OpenLibrary

Data science from scratch : first principles with Python / Joel Grus.

By: Material type: TextTextPublication details: Beijing : Oreilly , c2019.Edition: 2nd edDescription: xvii, 384 p. : ill. ; 24 cmISBN:
  • 9781492041139
Subject(s): DDC classification:
  • 005.75/65 23
LOC classification:
  • QA76.73.P98 G78 2019
Contents:
Introduction -- A crash course in Python -- Visualizing data -- Linear algebra -- Statistics -- Probability -- Hypothesis and inference -- Gradient descent -- Getting data -- Working with data -- Machine learning -- k-Nearest neighbors -- Naive bayes -- Simple linear regression -- Multiple regression -- Logistic regression -- Decision trees -- Neural networks -- Deep learning -- Clustering -- Natural language processing -- Network analysis -- Recommender systems -- Databases and SQL -- MapReduce -- Data ethics -- Go forth and do data science.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode
Books Books Zetech Library - Mang'u General Stacks Non-fiction QA76.73.P98 .G78 2019 (Browse shelf(Opens below)) C.3 Available Z009690
Books Books Zetech Library - Mang'u General Stacks Non-fiction QA76.73.P98 .G78 2019 (Browse shelf(Opens below)) C.2 Checked out 07/11/2024 Z009689
Books Books Zetech Library - Mang'u General Stacks Non-fiction QA76.73.P98 .G78 2019 (Browse shelf(Opens below)) C .1 Checked out 22/11/2024 Z009524

Includes bibliographical references and index.

Introduction -- A crash course in Python -- Visualizing data -- Linear algebra -- Statistics -- Probability -- Hypothesis and inference -- Gradient descent -- Getting data -- Working with data -- Machine learning -- k-Nearest neighbors -- Naive bayes -- Simple linear regression -- Multiple regression -- Logistic regression -- Decision trees -- Neural networks -- Deep learning -- Clustering -- Natural language processing -- Network analysis -- Recommender systems -- Databases and SQL -- MapReduce -- Data ethics -- Go forth and do data science.

There are no comments on this title.

to post a comment.