Data science from scratch : first principles with Python / Joel Grus.
Material type: TextPublication details: Beijing : Oreilly , c2019.Edition: 2nd edDescription: xvii, 384 p. : ill. ; 24 cmISBN:- 9781492041139
- 005.75/65 23
- QA76.73.P98 G78 2019
Item type | Current library | Collection | Call number | Copy number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
Books | Zetech Library - Mang'u General Stacks | Non-fiction | QA76.73.P98 .G78 2019 (Browse shelf(Opens below)) | C.3 | Available | Z009690 | ||
Books | Zetech Library - Mang'u General Stacks | Non-fiction | QA76.73.P98 .G78 2019 (Browse shelf(Opens below)) | C.2 | Checked out | 07/11/2024 | Z009689 | |
Books | Zetech Library - Mang'u General Stacks | Non-fiction | QA76.73.P98 .G78 2019 (Browse shelf(Opens below)) | C .1 | Checked out | 22/11/2024 | Z009524 |
Browsing Zetech Library - Mang'u shelves, Shelving location: General Stacks, Collection: Non-fiction Close shelf browser (Hides shelf browser)
QA76.73.J38 .H67 2019 Core Java Volume 1-Fundamentals / | QA76.73.J38 .H67 2019 Core Java Volume 1-Fundamentals / | QA76.73.J38 .P37 2003 Introductory Java / | QA76.73.P98 .G78 2019 Data science from scratch : first principles with Python / | QA76.73.P98 .G78 2019 Data science from scratch : first principles with Python / | QA76.73.P98 .G78 2019 Data science from scratch : first principles with Python / | QA76.73 .X16 .K87 2018 Modern x86 assembly language programming / |
Includes bibliographical references and index.
Introduction -- A crash course in Python -- Visualizing data -- Linear algebra -- Statistics -- Probability -- Hypothesis and inference -- Gradient descent -- Getting data -- Working with data -- Machine learning -- k-Nearest neighbors -- Naive bayes -- Simple linear regression -- Multiple regression -- Logistic regression -- Decision trees -- Neural networks -- Deep learning -- Clustering -- Natural language processing -- Network analysis -- Recommender systems -- Databases and SQL -- MapReduce -- Data ethics -- Go forth and do data science.
There are no comments on this title.