Zetech University Library - Online Catalog

Mobile: +254-705278678

Whatsapp: +254-706622557

Feedback/Complaints/Suggestions

library@zetech.ac.ke

Amazon cover image
Image from Amazon.com
Image from Google Jackets
Image from OpenLibrary

Advanced Python programming / Quan Nguyen.

By: Material type: TextTextPublisher: Birmingham, [United Kingdom] : Packt Publishing, 2022Edition: Second editionDescription: 1 online resource (606 pages) : illustrationsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781801817776
  • 1801817774
Subject(s): Genre/Form: DDC classification:
  • 005.72 23/eng/20221116
LOC classification:
  • QA76.73.P98 N48 2022
Online resources: Summary: Write fast, robust, and highly reusable applications using Python's internal optimization, state-of-the-art performance-benchmarking tools, and cutting-edge libraries Key Features Benchmark, profile, and accelerate Python programs using optimization tools Scale applications to multiple processors with concurrent programming Make applications robust and reusable using effective design patterns Book Description Python's powerful capabilities for implementing robust and efficient programs make it one of the most sought-after programming languages. In this book, you'll explore the tools that allow you to improve performance and take your Python programs to the next level. This book starts by examining the built-in as well as external libraries that streamline tasks in the development cycle, such as benchmarking, profiling, and optimizing. You'll then get to grips with using specialized tools such as dedicated libraries and compilers to increase your performance at number-crunching tasks, including training machine learning models. The book covers concurrency, a major solution to making programs more efficient and scalable, and various concurrent programming techniques such as multithreading, multiprocessing, and asynchronous programming. You'll also understand the common problems that cause undesirable behavior in concurrent programs. Finally, you'll work with a wide range of design patterns, including creational, structural, and behavioral patterns that enable you to tackle complex design and architecture challenges, making your programs more robust and maintainable. By the end of the book, you'll be exposed to a wide range of advanced functionalities in Python and be equipped with the practical knowledge needed to apply them to your use cases. What you will learn Write efficient numerical code with NumPy, pandas, and Xarray Use Cython and Numba to achieve native performance Find bottlenecks in your Python code using profilers Optimize your machine learning models with JAX Implement multithreaded, multiprocessing, and asynchronous programs Solve common problems in concurrent programming, such as deadlocks Tackle architecture challenges with design patterns Who this book is for This book is for intermediate to experienced Python programmers who are looking to scale up their applications in a systematic and robust manner. Programmers from a range of backgrounds will find this book useful, including software engineers, scientific programmers, and software architects.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Write fast, robust, and highly reusable applications using Python's internal optimization, state-of-the-art performance-benchmarking tools, and cutting-edge libraries Key Features Benchmark, profile, and accelerate Python programs using optimization tools Scale applications to multiple processors with concurrent programming Make applications robust and reusable using effective design patterns Book Description Python's powerful capabilities for implementing robust and efficient programs make it one of the most sought-after programming languages. In this book, you'll explore the tools that allow you to improve performance and take your Python programs to the next level. This book starts by examining the built-in as well as external libraries that streamline tasks in the development cycle, such as benchmarking, profiling, and optimizing. You'll then get to grips with using specialized tools such as dedicated libraries and compilers to increase your performance at number-crunching tasks, including training machine learning models. The book covers concurrency, a major solution to making programs more efficient and scalable, and various concurrent programming techniques such as multithreading, multiprocessing, and asynchronous programming. You'll also understand the common problems that cause undesirable behavior in concurrent programs. Finally, you'll work with a wide range of design patterns, including creational, structural, and behavioral patterns that enable you to tackle complex design and architecture challenges, making your programs more robust and maintainable. By the end of the book, you'll be exposed to a wide range of advanced functionalities in Python and be equipped with the practical knowledge needed to apply them to your use cases. What you will learn Write efficient numerical code with NumPy, pandas, and Xarray Use Cython and Numba to achieve native performance Find bottlenecks in your Python code using profilers Optimize your machine learning models with JAX Implement multithreaded, multiprocessing, and asynchronous programs Solve common problems in concurrent programming, such as deadlocks Tackle architecture challenges with design patterns Who this book is for This book is for intermediate to experienced Python programmers who are looking to scale up their applications in a systematic and robust manner. Programmers from a range of backgrounds will find this book useful, including software engineers, scientific programmers, and software architects.

WorldCat record variable field(s) change: 050, 082

There are no comments on this title.

to post a comment.