000 05887cam a2200745Ki 4500
001 on1088722879
003 OCoLC
005 20241121072734.0
006 m d
007 cr cnu---unuuu
008 190228s2019 enk ob 001 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dYDX
_dEBLCP
_dHTM
_dUAB
019 _a1089758035
_a1090813438
020 _a9781108605519
_q(electronic bk.)
020 _a1108605516
_q(electronic bk.)
020 _z9781107123052
020 _z1107123054
020 _a9781316389331 (ebook)
020 _a1316389332 (ebook)
035 _a2026053
_b(N$T)
035 _a(OCoLC)1088722879
_z(OCoLC)1089758035
_z(OCoLC)1090813438
050 4 _aQA930
_b.K5875 2019eb
072 7 _aSCI
_x041000
_2bisacsh
082 0 4 _a533/.62
_223
049 _aMAIN
100 1 _aKnight, Doyle,
_eauthor.
_910970
245 1 0 _aEnergy deposition for high-speed flow control /
_cDoyle D. Knight (Rutgers, the State University of New Jersey).
264 1 _aCambridge ;
_aNew York, NY :
_bCambridge University Press,
_c2019.
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aCambridge aerospace series ;
_v47
504 _aIncludes bibliographical references and indexes.
588 0 _aPrint version record.
505 0 _aCover; Half-title; Series information; Title page; Copyright information; Dedication; Contents; Preface; 1 Introduction; 1.1 Background; 1.2 Overview of the Book; 2 Fundamental Equations; 2.1 Overview; 2.2 Conservation of Mass; 2.3 Conservation of Momentum; 2.4 Conservation of Energy; 2.5 Second Law of Thermodynamics; 2.6 Maxwell's Equations; 2.7 Schr[ddot(o)]dinger's Equation; 2.8 Liouville's Equation and Theorem; Problems; 3 Statistical Mechanics and Continuum Physics; 3.1 Overview; 3.2 An Equilibrium Probability Density Function; 3.3 Bogoliubov-Born-Green-Kirkwood-Yvon Equations
505 8 _a3.4 Boltzmann Equation3.5 Collision Cross-Sections; 3.6 Boltzmann's H-Theorem; 3.7 Maxwell-Boltzmann Distribution; 3.8 Boltzmann's Equations for a Gas Mixture; 3.9 Equations of Continuum Gas Dynamics; 3.10 Chapman-Enskog Method; Problems; 4 Dynamics and Kinetics of Charged Particles; 4.1 Introduction; 4.2 Debye Length; 4.3 Sheath; 4.4 Isolated Ions; 4.5 Collision Frequency; 4.6 Mean Free Path; 4.7 Elastic Collisions; 4.8 Ionic Drift Velocity and Mobility in DC Electric Field; 4.9 Current and Conductivity in DC Electric Field; 4.10 Diffusion; 4.11 Ambipolar Diffusion
505 8 _a4.12 Thermochemical ReactionsProblems; 5 DC Discharge; 5.1 Introduction; 5.2 Townsend Regime; 5.3 Corona Regime; 5.4 Glow Discharge; 5.5 Streamer Discharge; 5.6 Spark Discharge; 5.7 Arc Discharge; Problems; 6 Microwave Discharge; 6.1 Introduction; 6.2 Microwave Theory; 6.3 Microwave Waveguides; 6.4 Microwave Discharge in Free Space; 6.5 Microwave Breakdown; 6.6 Simulations of Microwave Discharge; 6.7 Thermochemistry of Microwave Discharge; Problems; 7 Laser Discharge; 7.1 Introduction; 7.2 Laser Theory; 7.3 Laser Discharge; 7.4 Post-Discharge Flow Structure
505 8 _a7.5 Conditions for Breakdown in Air7.6 Models for Breakdown; 7.7 Fraction of Laser Energy Deposited in Air; 7.8 Simulation of Laser Discharge in Air; 7.9 Continuous Laser Discharge; Problems; 8 Modeling Energy Deposition as an Ideal Gas; 8.1 Introduction; 8.2 Governing Equations; 8.3 Dimensionless Parameters; 8.4 One-Dimensional Steady Energy Deposition; 8.5 Linearized Analysis for Steady Flow; 8.6 Belokon et al. (1977); 8.7 Krasnobaev and Syunyaev (1983); 8.8 Krasnobaev (1984); 8.9 Artem'ev et al. (1988); 8.10 Vlasov et al. (1995); 8.11 Georgievsky et al. (2010); 8.12 Additional References
505 8 _aProblems9 Flow Control in Aerodynamics; 9.1 Introduction; 9.2 Artem'ev et al. (1989); 9.3 Myrabo and Raizer (1994); 9.4 Tretyakov et al. (1996); 9.5 Bracken et al. (2001a,b,c); 9.6 Girgis et al. (2002); 9.7 Johns Hopkins University Applied Physics Laboratory (2003-2013); 9.8 Lashkov et al. (2004); 9.9 Kandala and Candler (2004); 9.10 Adelgren et al. (2005); 9.11 Kremeyer et al. (2006); 9.12 Zheltovodov et al. (2007); 9.13 Gnemmi et al. (2008); 9.14 Yan and Gaitonde (2008); 9.15 Caruana et al. (2009) and Hardy et al. (2010); 9.16 Georgievsky and Levin (2009); 9.17 Knight et al. (2009)
520 _aDescribes energy deposition using direct current (DC), microwave and laser discharge for flow control at high speeds.
590 _aMaster record variable field(s) change: 082
650 0 _aAerodynamics.
_910971
650 0 _aGas dynamics.
_910972
650 0 _aAir flow.
_910973
650 0 _aFluid dynamics.
_910974
650 0 _aElectric discharges.
_910975
650 0 _aSurface discharges (Electricity)
_910976
650 7 _aAerodynamics.
_2fast
_0(OCoLC)fst00798195
_910971
650 7 _aAir flow.
_2fast
_0(OCoLC)fst00802370
_910973
650 7 _aElectric discharges.
_2fast
_0(OCoLC)fst00904680
_910975
650 7 _aFluid dynamics.
_2fast
_0(OCoLC)fst00927973
_910974
650 7 _aGas dynamics.
_2fast
_0(OCoLC)fst00938238
_910972
650 7 _aSurface discharges (Electricity)
_2fast
_0(OCoLC)fst01139219
_910976
650 7 _aSCIENCE / Mechanics / General
_2bisacsh
_910977
655 4 _aElectronic books.
_93907
655 0 _aElectronic books.
_93907
776 0 8 _iPrint version:
_aKnight, Doyle.
_tEnergy deposition for high-speed flow control.
_dCambridge ; New York, NY : Cambridge University Press, 2019
_z9781107123052
_w(DLC) 2018043474
_w(OCoLC)1050650198
830 0 _aCambridge aerospace series ;
_v47.
_910978
856 4 0 _3EBSCOhost
_uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2026053
938 _aEBL - Ebook Library
_bEBLB
_nEBL5719382
938 _aYBP Library Services
_bYANK
_n16081953
938 _aEBSCOhost
_bEBSC
_n2026053
994 _a92
_bN$T
999 _c7013
_d7013