000 06005cam a2200709Ki 4500
001 on1101102167
003 OCoLC
005 20241121072742.0
006 m d
007 cr cnu|||unuuu
008 190513s2019 enk o 001 0 eng d
040 _aCAMBR
_beng
_erda
_epn
_cCAMBR
_dOCLCO
_dUIU
_dEBLCP
_dOCLCF
_dN$T
019 _a1103320776
020 _a9781108367639
_q(electronic bk.)
020 _a1108367631
_q(electronic bk.)
020 _z9781108431637
_q(paperback)
020 _a9781108373272
_q(electronic bk.)
020 _a1108373275
_q(electronic bk.)
020 _z1108431631
035 _a2091078
_b(N$T)
035 _a(OCoLC)1101102167
_z(OCoLC)1103320776
050 4 _aQA377
_b.P37 2019
072 7 _aMAT
_x005000
_2bisacsh
072 7 _aMAT
_x034000
_2bisacsh
082 0 4 _a515/.353
_223
049 _aMAIN
245 0 0 _aPartial differential equations arising from physics and geometry :
_ba volume in memory of Abbas Bahri /
_cedited by Mohamed Ben Ayed, Mohamed Ali Jendoubi, Yomna R�ba�, Hasna Riahi, Hatem Zaag.
264 1 _aCambridge :
_bCambridge University Press,
_c2019.
300 _a1 online resource (xvi, 453 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aLondon Mathematical Society lecture note series ;
_v450
520 _aIn this edited volume leaders in the field of partial differential equations present recent work on topics in PDEs arising from geometry and physics. The papers originate from a 2015 research school organized by CIMPA and MIMS in Hammamet, Tunisia to celebrate the 60th birthday of the late Professor Abbas Bahri. The opening chapter commemorates his life and work. While the research presented in this book is cutting-edge, the treatment throughout is at a level accessible to graduate students. It includes short courses offering readers a unique opportunity to learn the state of the art in evolution equations and mathematical models in physics, which will serve as an introduction for students and a useful reference for established researchers. Finally, the volume includes many open problems to inspire the next generation.
588 0 _aVendor-supplied metadata.
505 0 _aCover; Series page; Title page; Copyright information; Table of contents; Preface; Abbas Bahri: A Dedicated Life; 0.1 A short biography; 0.2 Mathematical contributions; References; 1 Blow-up Rate for a Semilinear Wave Equation with Exponential Nonlinearity in One Space Dimension; 1.1 Introduction; 1.2 The Local Cauchy Problem; 1.3 Energy Estimates; 1.4 ODE Type Estimates; 1.4.1 Preliminaries; 1.4.2 The Blow-up Rate; 1.5 Blow-up Estimates for Equation (1.1); 1.5.1 Blow-up Estimates in the General Case; 1.5.2 Blow-up Estimates in the Non-characteristic Case; References
505 8 _a2 On the Role of Anisotropy in the Weak Stability of the Navier-Stokes System2.1 Introduction and Statement of Results; 2.1.1 Setting of the Problem; 2.1.2 Statement of the Main Result; 2.1.3 Layout; 2.2 Proof of the Main Theorem; 2.2.1 General Scheme of the Proof; 2.2.2 Anisotropic Profile Decomposition; 2.2.3 Propagation of Profiles; 2.2.4 End of the Proof of the Main Theorem; 2.3 Profile Decomposition of the Sequence of Initial Data: Proof of Theorem 2.12; 2.3.1 Profile Decomposition of Anisotropically Oscillating, Divergence-free Vector Fields
505 8 _a2.3.2 Regrouping of Profiles According to Horizontal Scales2.4 Proof of Theorems 2.14 and 2.15; 2.4.1 Proof of Theorem 2.14; 2.4.2 Proof of [interactionprofilescale1]Theorem 2.15; References; 3 The Motion Law of Fronts for Scalar Reaction-diffusion Equations with Multiple Wells: the Degenerate Case; 3.1 Introduction; 3.1.1 Main Results: Fronts and Their Speed; 3.1.2 Regularized Fronts; 3.1.3 Paving the Way to the Motion Law; 3.1.4 A First Compactness Result; 3.1.5 Refined Estimates Off the Front Set and the Motion Law; 3.2 Remarks on Stationary Solutions
505 8 _a3.2.1 Stationary Solutions on R with Vanishing Discrepancy3.2.2 On the Energy of Chains of Stationary Solutions; 3.2.3 Study of the Perturbed Stationary Equation; 3.3 Regularized Fronts; 3.3.1 Finding Regularized Fronts; 3.3.2 Local Dissipation; 3.3.3 Quantization of the Energy; 3.3.4 Propagating Regularized Fronts; 3.4 First Compactness Results for the Front Points; 3.5 Refined Asymptotics Off the Front Set; 3.5.1 Relaxations Towards Stationary Solutions; 3.5.2 Preliminary Results; 3.5.3 The Attractive Case; 3.5.4 The Repulsive Case; 3.5.5 Estimating the Discrepancy; Linear Estimates
504 _aIncludes bibliographical references.
590 _aMaster record variable field(s) change: 072 - OCLC control number change
650 0 _aEvolution equations, Nonlinear.
_911370
650 0 _aDifferential equations, Partial.
_911371
650 7 _aDifferential equations, Partial.
_2fast
_0(OCoLC)fst00893484
_911371
650 7 _aEvolution equations, Nonlinear.
_2fast
_0(OCoLC)fst00917335
_911370
650 7 _aMATHEMATICS / Calculus
_2bisacsh
_911372
650 7 _aMATHEMATICS / Mathematical Analysis
_2bisacsh
_911373
655 0 _aElectronic books.
_93907
655 4 _aElectronic books.
_93907
700 1 _aBen Ayed, Mohamed,
_eeditor.
_911374
700 1 _aJendoubi, Mohamed Ali,
_eeditor.
_911375
700 1 _aR�ba�, Yomna,
_eeditor.
_911376
700 1 _aRiahi, Hasna,
_d1966-
_eeditor.
_911377
700 1 _aZaag, Hatem,
_eeditor.
_911378
700 1 _aBahri, Abbas,
_ehonoree.
_911379
776 0 8 _iPrint version:
_tPartial differential equations arising from physics and geometry.
_dCambridge : Cambridge University Press 2019
_z9781108431637
_w(OCoLC)1026264197
830 0 _aLondon Mathematical Society lecture note series ;
_v450.
_911380
856 4 0 _3EBSCOhost
_uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2091078
938 _aEBL - Ebook Library
_bEBLB
_nEBL5780807
938 _aEBSCOhost
_bEBSC
_n2091078
994 _a92
_bN$T
999 _c7068
_d7068