000 04350cam a22005538i 4500
001 on1381095855
003 OCoLC
005 20241121073153.0
006 m d
007 cr |||||||||||
008 230517s2023 nyu ob 001 0 eng
010 _a 2023019292
040 _aDLC
_beng
_erda
_cDLC
_dYDX
_dN$T
_dEBLCP
019 _a1378770297
020 _a9798886978643
_q(adobe pdf)
020 _z9798886977943
_q(hardcover)
035 _a3619761
_b(N$T)
035 _a(OCoLC)1381095855
_z(OCoLC)1378770297
042 _apcc
050 0 0 _aQA241
082 0 0 _a512.7
_223/eng20230708
049 _aMAIN
100 1 _aKannan, J.
_c(Mathematician),
_eauthor.
_924443
245 1 0 _aFundamental perceptions in contemporary number theory /
_cJ. Kannan, Manju Somanath.
263 _a2307
264 1 _a[New York] :
_b[Nova Science Publishers],
_c[2023]
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aComputational Mathematics and Analysis Series
504 _aIncludes bibliographical references and index.
520 _a"The current state and future directions of numerous facets of contemporary number theory are examined in this book "Fundamental Perceptions in Contemporary Number Theory" from a unified standpoint. The theoretical foundations of contemporary theories are unveiled as a consequence of simple challenges. Additionally, this book makes an effort to present the contents as simply as possible. It is primarily intended for novice mathematicians who have tried reading other works but have struggled to comprehend them due to complex reasoning"--
_cProvided by publisher.
588 _aDescription based on print version record and CIP data provided by publisher; resource not viewed.
505 0 _aChapter 1 Divisibility -- 1.1. Preliminaries -- 1.2. Division Algorithm -- .1.3. GCD, LCM and Euclidean -- 1.4. The Fundamental Theorem of Arithmetic -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 2Classical Functions of NumberTheory -- 2.1. Arithmetic Functions -- 2.2. Some Classical Arithmetic Functions -- 2.2.1. The Mobius Function -- 2.2.2. The Euler Totient Function
505 8 _a2.2.3. The Sum and Number of Divisors -- 2.3. Greatest Integer Function -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 3Theory of Congruences -- chapter.3.1. Basic Properties of -- 3.2. Divisibility Tests -- 3.3. Theory of Residues -- 3.4. Linear Congruences -- 3.5. Congruences of Higher Degree -- 3.6. Fermat- Little Theorem and its Applications -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 4Primitive Roots and Indices -- 4.1. Order of an Integer -- 4.2. Primitive Roots
505 8 _a4.3. Primitive Root Theorem -- 4.4. Theory of Indices -- Practical Challenges -- Answers to Practical Challenges -- Challenges From CSIR- NET -- Chapter 5Quadratic Reciprocity -- 5.1. Quadratic Residues and Non Residues -- 5.2. Legendre Symbol and Its Properties -- 5.3. Jacobi Symbol and Its Properties -- 5.4. Quadratic Reciprocity Law -- Practical Challenges -- Answers to Practical Challenges -- Chapter 6Special Numbers -- 6.1. Perfect Numbers -- 6.2. Mersenne Numbers -- 6.3. Amicable Numbers -- 6.4. Fermat Numbers -- 6.5. Pell Numbers -- Practical Challenges -- Chapter 7Waring's Problem
505 8 _a7.1. Sum of Two Squares -- 7.2. Difference of Two Squares -- 7.3. Sum of Three Squares -- 7.4. Sum of Four Squares -- 7.5. Waring's Problem.
590 _aWorldCat record variable field(s) change: 050, 082
650 0 _aNumber theory.
_924444
700 1 _aSomanath, Manju,
_eauthor.
_924445
776 0 8 _iPrint version:
_aKannan, J.
_tFundamental perceptions in contemporary number theory
_d[New York] : [Nova Science Publishers], [2023]
_z9798886977943
_w(DLC) 2023019291
830 0 _aComputational mathematics and analysis series.
_924446
856 4 0 _3EBSCOhost
_uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=3619761
938 _aEBSCOhost
_bEBSC
_n3619761
938 _aYBP Library Services
_bYANK
_n20211846
938 _aProQuest Ebook Central
_bEBLB
_nEBL30552217
994 _a92
_bN$T
999 _c8962
_d8962