000 03392cam a22003858i 4500
001 22926161
003 ZET-ke
005 20250129141751.0
008 230111s2023 flu b 001 0 eng
010 _a 2022052399
020 _a9781138311183
_q(hardback)
020 _a9781032473925
_q(paperback)
020 _z9780429459016
_q(ebook)
040 _aDLC
_beng
_erda
_cDLC
_dZET-ke
042 _apcc
050 0 0 _aQA278.2
_b.P43 2023
082 0 0 _a519.5/3502855133
_223/eng20230331
100 1 _aPebesma, Edzer J.,
_eauthor.
_927583
245 1 0 _aSpatial data science :
_bwith applications in R /
_cEdzer Pebesma and Roger Bivand.
250 _aFirst edition.
260 _aBoca Raton:
_bCRC Press, Taylor & Francis Group,
_c2023.
263 _a2304
300 _axiv, 300p.:
_bill. (col.)
_c23cm.
490 0 _aChapman & Hall/CRC Press the R series
504 _aIncludes bibliographical references and index.
505 _aPart 1. Spatial Data 1. Getting Started 2. Coordinates 3. Geometries 4. Spherical Geometries 5. Attributes and Support 6. Data Cubes Part 2. R for Spatial Data Science 7. Introduction to sf and stars 8. Plotting spatial data 9. Large data and cloud native Part 3. Models for Spatial Data 10. Statistical modelling of spatial data 11. Point Pattern Analysis 12. Spatial Interpolation 13. Multivariate and Spatiotemporal Geostatistics 14. Proximity and Areal Data 15. Measures of spatial autocorrelation 16. Spatial Regression 17. Spatial econometrics models Appendix A. Older R Spatial Packages
520 _a"Spatial Data Science introduces fundamental aspects of spatial data that every data scientist should know before they start working with spatial data. These aspects include how geometries are represented, coordinate reference systems (projections, datums), the fact that the Earth is round and its consequences for analysis, and how attributes of geometries can relate to geometries. In the second part of the book, these concepts are illustrated with data science examples using the R language. In the third part, statistical modelling approaches are demonstrated using real world data examples. After reading this book, a number of major spatial data analysis errors should no longer be made because of lack of knowledge. The book gives a detailed explanation of the core spatial software packages for R: sf for simple feature access, and stars for raster and vector data cubes - array data with spatial and temporal dimensions. It also shows how geometrical operations change when going from a flat space to the surface of a sphere, which is what sf and stars use when coordinates are not projected (degrees longitude/latitude). Separate chapters detail a variety of plotting approaches for spatial maps using R, and different ways of handling very large vector or raster (imagery) datasets, locally, in databases, or in the cloud"--
650 0 _aSpatial analysis (Statistics)
_xData processing.
_927584
650 0 _aR (Computer program language)
_925979
700 1 _aBivand, Roger,
_eauthor.
_927585
776 0 8 _iOnline version:
_aPebesma, Edzer.
_tSpatial data science
_bFirst edition.
_dBoca Raton, FL : CRC Press, 2023
_z9780429459016
_w(DLC) 2022052400
906 _a7
_bcbc
_corignew
_d1
_eecip
_f20
_gy-gencatlg
942 _2lcc
_cBK
_hQA278.2
_kQA278.2
_m.P43
999 _c9466
_d9466