Institutional Repository

The Significance of Understanding Product Topology in Data Science and Artificial Intelligence

Show simple item record

dc.contributor.author Barasa, Samuel
dc.contributor.author Videnyi, Edward
dc.date.accessioned 2024-02-09T08:29:04Z
dc.date.available 2024-02-09T08:29:04Z
dc.date.issued 2023-06
dc.identifier.uri https://unilibrary.zetech.ac.ke:8443/xmlui/handle/zet/162
dc.description.abstract This research investigates the properties and role of two different bases in defining the product topology on a Cartesian product of two topological spaces, X and Y. The first basis, denoted as ?, consists of all open sets of the form U × V, where U is open in X and V is open in Y. The second basis, denoted as ?, consists of all open sets of the form B × C, where B is open in X with respect to the product topology and C is open in Y with respect to the topology on Y. We establish that both bases are indeed bases for the product topology on X × Y and discuss their properties, including how they can be used to prove various results about the product topology. Our findings show that the basis ? provides an alternative way to define the product topology using open sets in X with respect to the product topology and open sets in Y with respect to the topology on Y, which may be useful in certain contexts. en_US
dc.language.iso en en_US
dc.publisher Iconic Research and Engineering Journals en_US
dc.subject Product Topology, Data Science, Artificial Intelligence en_US
dc.title The Significance of Understanding Product Topology in Data Science and Artificial Intelligence en_US
dc.type Other en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account